Question

If $$f:\left[ {0,\infty } \right) \to \left[ {0,\infty } \right)$$     and $$\,f\left( x \right) = \frac{x}{{1 + x}}$$    then $$f$$ is

A. one-one and onto
B. one-one but not onto  
C. onto but not one-one
D. neither one-one nor onto
Answer :   one-one but not onto
Solution :
Given that $$f:\left[ {0,\infty } \right) \to \left[ {0,\infty } \right)$$
Such that $$\,f\left( x \right) = \frac{x}{{1 + x}}$$
Then $$f'\left( x \right) = \frac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}} = \frac{1}{{{{\left( {1 + x} \right)}^2}}} > 0\forall x$$
$$\therefore f$$  is an increasing function $$ \Rightarrow f$$  is one-one.
Also, $${D_f} = \left[ {0,\infty } \right)$$
And for range let $$\frac{x}{{1 + x}} = y \Rightarrow x = \frac{y}{{1 - y}}$$
$$x \geqslant 0 \Rightarrow 0 \leqslant y < 1$$
$$\therefore {R_f} = \left[ {0,1} \right) \ne \,{\text{Co - domain}}$$
$$\therefore f$$  is not onto.

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section