Question

If $$\int {\frac{{dx}}{{{x^{22}}\left( {{x^7} - 6} \right)}} = A\left\{ {\ln {{\left( p \right)}^6} + 9{p^2} - 2{p^3} - 18p} \right\} + c} ,$$           then :

A. $$A = \frac{1}{{9072}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$
B. $$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$  
C. $$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7}}}{{{x^7} - 6}}} \right)$$
D. $$A = \frac{1}{{9072}},\,\,p = {\left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)^{ - 1}}$$
Answer :   $$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$
Solution :
$$\eqalign{ & {\text{Let }}I = \int {\frac{{dx}}{{{x^{29}}\left( {1 - \frac{6}{{{x^7}}}} \right)}}} \cr & {\text{Put }}1 - \frac{6}{{{x^7}}} = p \Rightarrow \frac{{42}}{{{x^8}}}dx = dp{\text{ and }}{x^7} = \frac{6}{{1 - p}} \cr & \therefore \,I = \frac{1}{{42}}\int {\frac{{{{\left( {1 - p} \right)}^3}}}{{{{\left( 6 \right)}^3}p}}dp} \cr & = \frac{1}{{\left( {42} \right)\left( {216} \right)}}\int {\frac{{1 - {p^3} - 3p + 3{p^2}}}{p}} dp \cr & = \frac{1}{{9072}}\int {\left( {\frac{1}{p} - {p^2} - 3 + 3p} \right)} dp \cr & = \frac{1}{{9072}}\left( {\log \,p - \frac{{{p^3}}}{3} - 3p + \frac{3}{2}{p^2}} \right) + c \cr & = \frac{1}{{54432}}\left( {6\,\ln \,p - 2{p^3} - 18p + 9{p^2}} \right) + c \cr & = \frac{1}{{54432}}\left( {\ln \,{p^6} + 9{p^2} - 2{p^3} - 18p} \right) + c \cr & A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Indefinite Integration

Releted Question 1

The value of the integral $$\int {\frac{{{{\cos }^3}x + {{\cos }^5}x}}{{{{\sin }^2}x + {{\sin }^4}x}}dx} $$    is-

A. $$\sin \,x - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
B. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + c$$
C. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
D. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + 5\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
Releted Question 2

If $$\int_{\sin \,x}^1 {{t^2}f\left( t \right)dt = 1 - \sin \,x} ,$$      then $$f\left( {\frac{1}{{\sqrt 3 }}} \right)$$   is-

A. $$\frac{1}{3}$$
B. $${\frac{1}{{\sqrt 3 }}}$$
C. $$3$$
D. $$\sqrt 3 $$
Releted Question 3

Solve this $$\int {\frac{{{x^2} - 1}}{{{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx} = ?$$

A. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^2}}} + C$$
B. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^3}}} + C$$
C. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{x} + C$$
D. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{2{x^2}}} + C$$
Releted Question 4

Let $$I = \int {\frac{{{e^x}}}{{{e^{4x}} + {e^{2x}} + 1}}dx,\,J = \int {\frac{{{e^{ - \,x}}}}{{{e^{ - \,4x}} + {e^{ - \,2x}} + 1}}dx.} } $$
Then for an arbitrary constant $$C,$$ the value of $$J-I$$  equals-

A. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} - {e^{2x}} + 1}}{{{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} + {e^x} + 1}}{{{e^{2x}} - {e^x} + 1}}} \right) + C$$
C. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} - {e^x} + 1}}{{{e^{2x}} + {e^x} + 1}}} \right) + C$$
D. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} + {e^{2x}} + 1}}{{{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$

Practice More Releted MCQ Question on
Indefinite Integration


Practice More MCQ Question on Maths Section