Question

If \[D = \left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\,\,\,1 + x\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,1 + y \end{array} \right|\]     $${\text{for }}x \ne 0,y \ne 0,$$    then $$D$$ is

A. divisible by $$x$$ but not $$y$$
B. divisible by $$y$$ but not $$x$$
C. divisible by neither $$x$$ nor $$y$$
D. divisible by both $$x$$ and $$y$$  
Answer :   divisible by both $$x$$ and $$y$$
Solution :
\[{\rm{Given }}\,\,D = \left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\,\,\,1 + x\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,1 + y \end{array} \right|\]
$${\text{Apply }}{R_2} \to {R_2} - {R_1}\,{\text{and }}R \to {R_3} - {R_1}$$
\[\therefore \,\,D = \left| \begin{array}{l} 1\,\,\,\,\,\,\,1\,\,\,\,\,\,\,1\\ 0\,\,\,\,\,\,x\,\,\,\,\,\,0\\ 0\,\,\,\,\,\,0\,\,\,\,\,\,y \end{array} \right| = xy\]
Hence, $$D$$ is divisible by both $$x$$ and $$y$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section