Question

If $$\cos \theta + \cos 2\theta + \cos 3\theta = 0,$$      then the general value of $$\theta$$ is :

A. $$\theta = 2m\pi \pm \frac{{2\pi }}{3}$$  
B. $$\theta = 2m\pi \pm \frac{{\pi }}{4}$$
C. $$\theta = m\pi + {\left( { - 1} \right)^n}\frac{{2\pi }}{3}$$
D. $$\theta = m\pi + {\left( { - 1} \right)^n}\frac{{\pi }}{3}$$
Answer :   $$\theta = 2m\pi \pm \frac{{2\pi }}{3}$$
Solution :
$$\eqalign{ & {\text{Given, }}\cos \theta + \cos 2\theta + \cos 3\theta = 0 \cr & \Rightarrow \left( {\cos 3\theta + \cos \theta } \right) + \cos 2\theta = 0 \cr & \Rightarrow 2\cos 2\theta \cdot \cos \theta + \cos 2\theta = 0 \cr & \Rightarrow \cos 2\theta \cdot \left( {2\cos \theta + 1} \right) = 0 \cr & {\text{we have}},\cos \theta = \cos \alpha \cr & \Rightarrow \theta = 2n\pi \pm \alpha \cr & \therefore {\text{For general value of }}\,\theta ,\cos 2\theta = 0 \cr & \Rightarrow \cos 2\theta = \cos \frac{\pi }{2} \cr & \Rightarrow 2\theta = 2m\pi \pm \frac{\pi }{2} \cr & \Rightarrow \theta = m\pi \pm \frac{\pi }{4}{\text{ or }}\,2\cos \theta + 1 = 0; \cr & \Rightarrow \cos \theta = \frac{{ - 1}}{2} \cr & \Rightarrow \cos \theta = \cos \frac{{2\pi }}{3} \cr & {\text{So}},\theta = 2m\pi \pm \frac{{2\pi }}{3} \cr} $$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section