Question

If $${\cos ^{ - 1}}\sqrt p + {\cos ^{ - 1}}\sqrt {1 - p} + {\cos ^{ - 1}}\sqrt {1 - q} = \frac{{3\pi }}{4}\,$$         then the value of $$q$$ is equal to

A. $$1$$
B. $$\frac{1}{{\sqrt 2 }}$$
C. $$\frac{1}{3}$$
D. $$\frac{1}{2}$$  
Answer :   $$\frac{1}{2}$$
Solution :
$$\eqalign{ & {\text{Let, }}{\cos ^{ - 1}}\sqrt p + {\cos ^{ - 1}}\sqrt {1 - p} + {\cos ^{ - 1}}\sqrt {1 - q} = \frac{{3\pi }}{4}\,\,.....\left( {\text{i}} \right) \cr & {\text{Let, }}\,a = {\cos ^{ - 1}}\sqrt p \,b = {\cos ^{ - 1}}\sqrt {1 - p} {\text{ and }}c = {\cos ^{ - 1}}\sqrt {1 - q} \cr & \Rightarrow \cos a = \sqrt p ,\cos b = \sqrt {1 - p} ,\cos c = \sqrt {1 - q} \cr & \Rightarrow {\cos ^2}a = p,{\cos ^2}b = 1 - p,{\cos ^2}c = 1 - q \cr & {\text{Now}},\,\,{\sin ^2}a = 1 - {\cos ^2}a = 1 - p \cr & \Rightarrow \sin a = \sqrt {1 - p} , \cr & {\sin ^2}b = 1 - {\cos ^2}b = 1 - 1 + p \cr & \Rightarrow \sin b = \sqrt p \cr & {\sin ^2}c = 1 - {\cos ^2}c = 1 - 1 + q = q \cr & \Rightarrow \sin c = \sqrt q \cr} $$
$$\therefore $$ equation (i) can be written as
$$\eqalign{ & a + b + c = \frac{{3\pi }}{4} \cr & \Rightarrow a + b = \frac{{3\pi }}{4} - c \cr} $$
Take $$\cos$$  on each side, we get
$$\eqalign{ & \cos \left( {a + b} \right) = \cos \left( {\frac{{3\pi }}{4} - c} \right) \cr & \Rightarrow \cos a\cos b - \sin a\sin b \cr & = \cos \left\{ {\pi - \left( {\frac{\pi }{4} + c} \right)} \right\} = - \cos \left( {\frac{\pi }{4} + c} \right) \cr} $$
Put values of $$\cos a, \cos b$$   and $$\sin a, \sin b,$$   we get
$$\eqalign{ & \sqrt p \cdot \sqrt {1 - p} - \sqrt {1 - p} \sqrt p \cr & = - \left( {\frac{1}{{\sqrt 2 }}\sqrt {1 - q} - \frac{1}{{\sqrt 2 }}\sqrt q } \right) \cr & \Rightarrow 0 = \sqrt {1 - q} - \sqrt q \cr & \Rightarrow \sqrt {1 - q} = \sqrt q \cr} $$
Squaring on both side : $$ \Rightarrow 1 - q = q$$
$$\eqalign{ & \Rightarrow 1 = 2q \cr & \Rightarrow q = \frac{1}{2} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section