Question

If both the roots of the quadratic equation $${x^2} - 2kx + {k^2} + k - 5 = 0$$      are less than 5, then $$k$$ lies in the interval

A. $$\left( {5,6} \right]$$
B. $$\left( {6,\infty } \right)$$
C. $$\left( { - \infty ,4} \right)$$  
D. $$\left[ {4,5} \right]$$
Answer :   $$\left( { - \infty ,4} \right)$$
Solution :
both roots are less than 5 then (i) Discriminant $$ \geqslant 0$$
$$\eqalign{ & \left( {{\text{ii}}} \right)\,\,p\left( 5 \right) > 0 \cr & \left( {{\text{iii}}} \right)\,\,\frac{{{\text{Sum of roots}}}}{2} < 5 \cr} $$
Quadratic Equation mcq solution image
$$\eqalign{ & {\text{Hence }}\left( {\text{i}} \right)4{k^2} - 4\left( {{k^2} + k - 5} \right) \geqslant 0 \cr & 4{k^2} - 4{k^2} - 4k + 20 \geqslant 0 \cr & 4k \leqslant 20 \cr & \Rightarrow \,\,k \leqslant 5 \cr & \left( {{\text{ii}}} \right)\,\,f\left( 5 \right) > 0;25 - 10k + {k^2} + k - 5 > 0 \cr & {\text{or }}\,{k^2} - 9k + 20 > 0 \cr & {\text{or }}k\left( {k - 4} \right) - 5\left( {k - 4} \right) > 0 \cr & {\text{or }}\left( {k - 5} \right)\left( {k - 4} \right) > 0 \cr & \Rightarrow \,\,k \in \left( { - \infty ,4} \right) \cup \left( { - \infty ,5} \right) \cr & \left( {{\text{iii}}} \right)\,\,\frac{{{\text{Sum of roots}}}}{2} = - \frac{b}{{2a}} = \frac{{2k}}{2} < 5 \cr} $$
The interection of (i), (ii) & (iii) gives
$$k \in \left( { - \infty ,4} \right)$$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section