Question

If \[\left| {\begin{array}{*{20}{c}} a&{\cot \frac{A}{2}}&\lambda \\ b&{\cot \frac{B}{2}}&\mu \\ c&{\cot \frac{C}{2}}&\gamma \end{array}} \right| = 0,\]    where $$a, b, c, A, B,$$   and $$C$$ are elements of a triangle $$ABC$$  with usual meaning. Then, the value of a $$\left( {\mu - \gamma } \right) + b\left( {\gamma - \lambda } \right) + c\left( {\lambda - \mu } \right) = 0$$        is

A. $$0$$  
B. $$abc$$
C. $$ab + bc + ca$$
D. $$2abc$$
Answer :   $$0$$
Solution :
Given, \[\left| {\begin{array}{*{20}{c}} a&{\cot \frac{A}{2}}&\lambda \\ b&{\cot \frac{B}{2}}&\mu \\ c&{\cot \frac{C}{2}}&\gamma \end{array}} \right| = 0\]
\[\begin{array}{l} \Rightarrow \left| {\begin{array}{*{20}{c}} a&{\frac{{s\left( {s - a} \right)}}{\Delta }}&\lambda \\ b&{\frac{{s\left( {s - b} \right)}}{\Delta }}&\mu \\ c&{\frac{{s\left( {s - c} \right)}}{\Delta }}&\gamma \end{array}} \right| = 0\\ \Rightarrow \frac{1}{r}\left| {\begin{array}{*{20}{c}} a&{s - a}&\lambda \\ b&{s - b}&\mu \\ c&{s - c}&\gamma \end{array}} \right| = 0 \end{array}\]
Apply, $${C_2} \to {C_2} + {C_1}$$
\[\begin{array}{l} \Rightarrow \frac{1}{r}\left| {\begin{array}{*{20}{c}} a&s&\lambda \\ b&s&\mu \\ c&s&\gamma \end{array}} \right| = 0,\,\,{\rm{where}}\,\,r = \frac{\Delta }{s}\\ \Rightarrow \frac{\Delta }{{{r^2}}}\left| {\begin{array}{*{20}{c}} a&1&\lambda \\ b&1&\mu \\ c&1&\gamma \end{array}} \right| = 0 \end{array}\]
Apply, $${R_1} \to {R_1} - {R_2},{R_2} \to {R_2} - {R_3}$$
\[ \Rightarrow \frac{\Delta }{{{r^2}}}\left| {\begin{array}{*{20}{c}} {a - b}&0&{\lambda - \mu }\\ {b - c}&0&{\mu - \gamma }\\ c&1&\gamma \end{array}} \right| = 0\]
$$\eqalign{ & \Rightarrow \frac{\Delta }{{{r^2}}}\left[ {\left( {b - c} \right)\left( {\lambda - \mu } \right) - \left( {\mu - \gamma } \right)\left( {a - b} \right)} \right] = 0 \cr & \Rightarrow b\left( {\lambda - \mu } \right) - c\left( {\lambda - \mu } \right) - a\left( {\mu - \gamma } \right) + b\left( {\mu - \gamma } \right) = 0 \cr & \Rightarrow - a\left( {\mu - \gamma } \right) + b\left( {\lambda - \mu + \mu - \gamma } \right) - c\left( {\lambda - \mu } \right) = 0 \cr & \Rightarrow - a\left( {\mu - \gamma } \right) + b\left( {\lambda - \gamma } \right) - c\left( {\lambda - \mu } \right) = 0 \cr & \Rightarrow a\left( {\mu - \gamma } \right) + b\left( {\gamma - \lambda } \right) + c\left( {\lambda - \mu } \right) = 0 \cr} $$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section