Question

If $${\text{amp}}\frac{{z - 2}}{{2z + 3i}} = 0$$    and $${z_0} = 3 + 4i$$   them

A. $${z_0}\overline z + {\overline z _0}z = 12$$
B. $${z_0}z + {\overline z _0}\overline z = 12$$  
C. $${z_0}\overline z + {\overline z _0}z = 0$$
D. None of these
Answer :   $${z_0}z + {\overline z _0}\overline z = 12$$
Solution :
$$\eqalign{ & \frac{{z - 2}}{{2z + 3i}} = \frac{{\left( {x - 2} \right) + iy}}{{2x + i\left( {2y + 3} \right)}} \cr & \therefore \,\,{\text{amp}}\frac{{z - 2}}{{2z + 3i}} = {\text{amp}}\left\{ {\left( {x - 2} \right) + iy} \right\} - {\text{amp}}\left\{ {2x + i\left( {2y + 3} \right)} \right\} \cr & {\text{or, }}0 = {\tan ^{ - 1}}\frac{y}{{x - 2}} - {\tan ^{ - 1}}\frac{{2y + 3}}{{2x}} \cr & \Rightarrow \,\,\frac{y}{{x - 2}} = \frac{{2y + 3}}{{2x}} \cr & \Rightarrow \,\,3x - 4y = 6. \cr & {\text{Now, }}{z_0}z = \left( {3 + 4i} \right)\left( {x + iy} \right) = \left( {3x - 4y} \right) + i\left( {4x + 3y} \right) \cr & {z_0}\overline z = \left( {3 + 4i} \right)\left( {x - iy} \right) = \left( {3x + 4y} \right) + i\left( {4x - 3y} \right) \cr & {\overline z _0}z = \left( {3 - 4i} \right)\left( {x + iy} \right) = \left( {3x + 4y} \right) + i\left( { - 4x + 3y} \right) \cr & {\overline z _0}\overline z = \left( {3 - 4i} \right)\left( {x - iy} \right) = \left( {3x - 4y} \right) + i\left( { - 4x - 3y} \right). \cr} $$
Check the correct answer.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section