Question

If $$\alpha + \beta = \frac{\pi }{2}\,{\text{and }}\beta + \gamma = \alpha ,$$      then $$\tan \alpha $$  equals

A. $$2\left( {\tan \beta + \tan \gamma } \right)$$
B. $${\tan \beta + \tan \gamma }$$
C. $${\tan \beta + 2\tan \gamma }$$  
D. $${2\tan \beta + \tan \gamma }$$
Answer :   $${\tan \beta + 2\tan \gamma }$$
Solution :
Given that $$\alpha + \beta = \frac{\pi }{2}\,$$
$$\eqalign{ & \Rightarrow \,\alpha = \frac{\pi }{2} - \beta \cr & \Rightarrow \,\,\tan \alpha = \tan \left( {\frac{\pi }{2} - \beta } \right) = \cot \beta = \frac{1}{{\tan \beta }} \cr & \Rightarrow \,\,\tan \alpha \tan \beta = 1 \cr & \Rightarrow \,\,1 + \tan \alpha \tan \beta = 2. \cr & \,\therefore \,\,\tan \left( {\alpha - \beta } \right) = \frac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }} \cr & \Rightarrow \,\,\tan \gamma = \frac{{\tan \alpha - \tan \beta }}{2} \cr & \Rightarrow \,\,2\tan \gamma = \tan \alpha - \tan \beta \cr & \Rightarrow \,\,\tan \alpha = 2\tan \gamma + \tan \beta \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section