Question
If $$\frac{\alpha }{{\alpha '}},\,\frac{\beta }{{\beta '}},\,\frac{\gamma }{{\gamma '}}$$ are not all equal, the point of intersection of the lines $$\frac{{x - \alpha '}}{\alpha } = \frac{{y - \beta '}}{\beta } = \frac{{z - \gamma '}}{\gamma }$$ and $$\frac{{x - \alpha }}{{\alpha '}} = \frac{{y - \beta }}{{\beta '}} = \frac{{z - \gamma }}{{\gamma '}}$$ is :
A.
$$\left( {\alpha - \alpha ',\,\beta - \beta ',\,\gamma - \gamma '} \right)$$
B.
$$\left( {\alpha + \alpha ',\,\beta + \beta ',\,\gamma + \gamma '} \right)$$
C.
$$\left( {\alpha \alpha ',\,\beta \beta ',\,\gamma \gamma '} \right)$$
D.
none because they are nonintersecting
Answer :
$$\left( {\alpha + \alpha ',\,\beta + \beta ',\,\gamma + \gamma '} \right)$$
Solution :
From the question, the lines are not parallel.
Any point on the first line is $$\left( {\alpha ' + \alpha r,\,\beta ' + \beta r,\,\gamma ' + \gamma r} \right).$$ It is on the other line if
$$\eqalign{
& \frac{{\alpha ' + \alpha r - \alpha }}{{\alpha '}} = \frac{{\beta ' + \beta r - \beta }}{{\beta '}} = \frac{{\gamma ' + \gamma r - \gamma }}{{\gamma '}} \cr
& \Rightarrow 1 + \frac{{\alpha \left( {r - 1} \right)}}{{\alpha '}} = 1 + \frac{{\beta \left( {r - 1} \right)}}{{\beta '}} = 1 + \frac{{\gamma \left( {r - 1} \right)}}{{\gamma '}} \cr
& \Rightarrow \frac{{\alpha \left( {r - 1} \right)}}{{\alpha '}} = \frac{{\beta \left( {r - 1} \right)}}{{\beta '}} = \frac{{\gamma \left( {r - 1} \right)}}{{\gamma '}} \cr
& \Rightarrow r - 1 = 0\,\,\,\,\,\,\left( {\because \frac{\alpha }{{\alpha '}} = \frac{\beta }{{\beta '}} = \frac{\gamma }{{\gamma '}}{\text{ is not true}}} \right) \cr} $$
$$\therefore $$ the point of intersection is $$\left( {\alpha ' + \alpha .1,\,\beta ' + \beta .1,\,\gamma ' + \gamma .1} \right).$$