Question

If $${A_i} = \frac{{x - {a_i}}}{{\left| {x - {a_i}} \right|}},\,i = 1,\,2,\,3,.....,\,n$$       and $${a_1} < {a_2} < {a_3}.....{a_n},$$     then $$\mathop {\lim }\limits_{x \to {a_m}} \left( {{A_1}{A_2}.....{A_n}} \right),\,1 \leqslant m \leqslant n$$

A. is equal to $${\left( { - 1} \right)^m}$$
B. is equal to $${\left( { - 1} \right)^{m + 1}}$$
C. is equal to $${\left( { - 1} \right)^{m - 1}}$$
D. does not exist  
Answer :   does not exist
Solution :
$$\eqalign{ & {A_i} = \frac{{x - {a_i}}}{{\left| {x - {a_i}} \right|}},\,i = 1,\,2,\,3,.....,\,n \cr & {a_1} < {a_2} < {a_3} < ..... < {a_n} \cr} $$
If $$x$$ is in the left neighborhood of $${a_1} < {a_2} < ..... < {a_{m - 1}} < x < {a_m} < {a_{m + 1}} < ..... < {a_n}$$
$$\eqalign{ & {A_i} = \frac{{x - {a_i}}}{{x - {a_i}}} = 1,\,i = 1,\,2,.....,\,m - 1\,; \cr & {A_i} = \frac{{x - {a_i}}}{{\left( {{a_i} - x} \right)}} = - 1,\,i = m,\,m - 1,.....,\,n \cr & \therefore \,{A_1}{A_2}.....{A_n} = {\left( { - 1} \right)^{n - m + 1}}......({\text{i}}) \cr} $$
If $$x$$ is in the left neighborhood of $${a_m},\,{a_1} < {a_2} < ..... < {a_{m - 1}} < {a_m} < x < {a_{m + 1}} < ..... < {a_n},$$
$$\eqalign{ & {A_i} = \frac{{x - {a_i}}}{{x - {a_i}}} = 1,\,i = 1,\,2,.....,\,n \cr & \therefore \,{A_1}{A_2}.....{A_n} = {\left( { - 1} \right)^{n - m}}......({\text{ii}}) \cr & \therefore \,\mathop {\lim }\limits_{x \to a_m^ - } \left( {{A_1}{A_2}.....{A_n}} \right) = {\left( { - 1} \right)^{n - m + 1}} \cr & {\text{and }}\mathop {\lim }\limits_{x \to a_m^ + } \left( {{A_1}{A_2}.....{A_n}} \right) = {\left( { - 1} \right)^{n - m}} \cr & \therefore \,L.H.L. \ne R.H.L. \cr & {\text{Hence, }}\mathop {\lim }\limits_{x \to {a_m}} \left( {{A_1}{A_2}.....{A_n}} \right){\text{ does not exist}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section