Question

If $$af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 5,\,x \ne 0,\,a \ne b,$$         then $$\int_1^2 {f\left( x \right)dx} $$   equals :

A. $$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{13}}{2}b}}{{{a^2} - {b^2}}}$$
B. $$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$  
C. $$\frac{{\left( {5 - \log \,2} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$
D. none of these
Answer :   $$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$
Solution :
$$\eqalign{ & af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 5 \cr & \Rightarrow af\left( {\frac{1}{x}} \right) + bf\left( x \right) = x - 5 \cr & {\text{From these, }}\left( {{a^2} - {b^2}} \right)f\left( x \right) = a\left( {\frac{1}{x} - 5} \right) - b\left( {x - 5} \right) \cr & \therefore \,\int_1^2 {f\left( x \right)dx} = \int_1^2 {\frac{1}{{{a^2} - {b^2}}}\left\{ {\frac{a}{x} - bx - 5a + 5b} \right\}dx} \cr & = \frac{1}{{{a^2} - {b^2}}}\left[ {a\log \,x - b\frac{{{x^2}}}{2} + 5\left( {b - a} \right)x} \right]_1^2 \cr & = \frac{{a\log \,2 - 2b + 10\left( {b - a} \right) + \frac{b}{2} - 5\left( {b - a} \right)}}{{{a^2} - {b^2}}} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section