Question

If $$a,\,b,\,c$$   are the $${p^{th}},\,{q^{th}},\,{r^{th}}$$   terms of an HP and $$\overrightarrow u = \left( {q - r} \right)\hat i + \left( {r - p} \right)\hat j + \left( {p - q} \right)\hat k,\,\overrightarrow v = \frac{{\overrightarrow i }}{a} + \frac{{\overrightarrow j }}{b} + \frac{{\overrightarrow k }}{c}{\text{ then :}}$$

A. $$\overrightarrow u ,\,\overrightarrow v $$  are parallel vectors
B. $$\overrightarrow u ,\,\overrightarrow v $$  are orthogonal vectors  
C. $$\vec u.\vec v = 1$$
D. $$\vec u \times \vec v = \overrightarrow i + \overrightarrow j + \overrightarrow k $$
Answer :   $$\overrightarrow u ,\,\overrightarrow v $$  are orthogonal vectors
Solution :
$$\eqalign{ & \frac{1}{a} = A + \left( {p - 1} \right)D\,; \cr & \frac{1}{b} = A + \left( {q - 1} \right)D\,; \cr & \frac{1}{c} = A + \left( {r - 1} \right)D \cr & \therefore \,q - r = \frac{{c - b}}{{bcD}},\,r - p = \frac{{a - c}}{{acD}},\,p - q = \frac{{b - a}}{{abD}} \cr & \Rightarrow \frac{{q - r}}{a} + \frac{{r - p}}{b} + \frac{{p - q}}{c} = 0 \cr & \Rightarrow \vec u.\vec v = 0 \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section