Question

If $$AB = 0,$$   then for the matrices \[A = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\theta }&{\cos \theta \sin \theta }\\ {\cos \theta \sin \theta }&{{{\sin }^2}\theta } \end{array}} \right]\]      and \[B = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\phi }&{\cos \phi \sin \phi }\\ {\cos \phi \sin \phi }&{{{\sin }^2}\phi } \end{array}} \right],\]      $$\theta - \phi $$  is

A. an odd number of $$\frac{\pi }{2}$$  
B. an odd multiple of $$\pi$$
C. an even multiple of $$\frac{\pi }{2}$$
D. $$0$$
Answer :   an odd number of $$\frac{\pi }{2}$$
Solution :
We have,
\[\begin{array}{l} AB = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\theta }&{\cos \theta \sin \theta }\\ {\cos \theta \sin \theta }&{{{\sin }^2}\theta } \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\phi }&{\cos \phi \sin \phi }\\ {\cos \phi \sin \phi }&{{{\sin }^2}\phi } \end{array}} \right]\\ = \,\left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\theta \,{{\cos }^2}\phi + \cos \theta \,\cos \phi \,\sin \theta \,\sin \phi \,{{\cos }^2}\theta \,\cos \phi \,\sin \phi + \cos \theta \,\sin \theta \,{{\sin }^2}\phi }\\ {\cos \theta \,\sin \theta\, {{\cos }^2}\phi + {{\sin }^2}\theta \,\cos \phi \,\sin \phi \,\cos \theta \,\cos \phi \,\sin\theta \,\sin\phi + {\sin^2}\theta \,{{\sin }^2}\phi } \end{array}} \right]\\ = \,\cos \left( {\theta - \phi } \right)\left[ {\begin{array}{*{20}{c}} {\cos \theta \cos \phi }&{\cos \theta \sin \phi }\\ {\sin \theta \cos \phi }&{\sin \theta \sin \phi } \end{array}} \right] \end{array}\]
$$\eqalign{ & {\text{Since,}}\,AB = 0 \cr & \therefore \,\cos \left( {\theta - \phi } \right) = 0 \cr} $$
$$\therefore \,\theta - \phi $$   is an odd multiple of $$\frac{\pi }{2}$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section