Question

If $${a_1},{a_2},{a_3},.....,{a_n}$$    is an A.P. with common difference $$d;\left( {d > 0} \right)$$   then $$\tan \left[ {{{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_1}{a_2}}}} \right) + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_2}{a_3}}}} \right) + ..... + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_{n - 1}}{a_n}}}} \right)} \right]$$               is equal to

A. $$\frac{{\left( {n - 1} \right)d}}{{{a_1} + {a_n}}}$$
B. $$\frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}}$$  
C. $$\frac{{nd}}{{1 + {a_1}{a_n}}}$$
D. $$\frac{{{a_n} - {a_1}}}{{{a_n} + {a_1}}}$$
Answer :   $$\frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}}$$
Solution :
We have,
$$\eqalign{ & {\tan ^{ - 1}}\left( {\frac{d}{{1 + {a_1}{a_2}}}} \right) + {\tan ^{ - 1}}\left( {\frac{d}{{1 + {a_2}{a_3}}}} \right) + ..... + {\tan ^{ - 1}}\left( {\frac{d}{{1 + {a_{n - 1}}{a_n}}}} \right) \cr & = {\tan ^{ - 1}}\left( {\frac{{{a_2} - {a_1}}}{{1 + {a_1}{a_2}}}} \right) + {\tan ^{ - 1}}\left( {\frac{{{a_3} - {a_2}}}{{1 + {a_2}{a_3}}}} \right) + ..... + {\tan ^{ - 1}}\left( {\frac{{{a_n} - {a_{n - 1}}}}{{1 + {a_{n - 1}}{a_n}}}} \right) \cr & = \left( {{{\tan }^{ - 1}}{a_2} - {{\tan }^{ - 1}}{a_1}} \right) + \left( {{{\tan }^{ - 1}}{a_3} - {{\tan }^{ - 1}}{a_2}} \right) + ..... + \left( {{{\tan }^{ - 1}}{a_n} - {{\tan }^{ - 1}}{a_{n - 1}}} \right) \cr & = {\tan ^{ - 1}}{a_n} - {\tan ^{ - 1}}{a_1} = {\tan ^{ - 1}}\left( {\frac{{{a_n} - {a_1}}}{{1 + {a_n}{a_1}}}} \right) \cr & = {\tan ^{ - 1}}\left( {\frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}}} \right) \cr & \therefore \tan \left[ {{{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_1}{a_2}}}} \right) + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_2}{a_3}}}} \right) + ..... + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_{n - 1}}{a_n}}}} \right)} \right] = \frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section