Question

If $${a_1},{a_2},{a_3},.....$$   are in A.P. and $$a_1^2 - a_2^2 + a_3^2 - a_4^2 + ..... + a_{2k - 1}^2 - a_{2k}^2 = M\left( {a_1^2 - a_{2k}^2} \right).\,{\text{Then }}M = $$

A. $$\frac{{k - 1}}{{k + 1}}$$
B. $$\frac{{k }}{{2k - 1}}$$  
C. $$\frac{{k + 1}}{{2k + 1}}$$
D. none
Answer :   $$\frac{{k }}{{2k - 1}}$$
Solution :
We have, $${a_2} - {a_1} = {a_3} - {a_2} = .....\,{a_{2k}} - {a_{2k - 1}} = d$$
Hence,
$$\eqalign{ & a_1^2 - a_2^2 = \left( {{a_1} - {a_2}} \right)\left( {{a_1} + {a_2}} \right) = - d\left( {{a_1} + {a_2}} \right) \cr & a_3^2 - a_4^2 = \left( {{a_3} - {a_4}} \right)\left( {{a_3} + {a_4}} \right) = - d\left( {{a_3} + {a_4}} \right) \cr & ......................... \cr & ......................... \cr & a_{2k - 1}^2 - a_{2k}^2 = \left( {{a_{2k - 1}} - {a_{2k}}} \right)\left( {{a_{2k - 1}} + {a_{2k}}} \right) = - d\left( {{a_{2k - 1}} + {a_{2k}}} \right) \cr & {\text{Adding, we get}} \cr & a_1^2 - a_2^2 + a_3^2 - a_4^2 + ..... + a_{2k - 1}^2 - a_{2k}^2 \cr & = - d\left( {{a_1} + {a_2} + {a_3} + {a_4} + .....\,{a_{2k - 1}} + {a_{2k}}} \right) \cr & = - d \cdot \frac{{2k}}{2}\left( {{a_1} + {a_{2k}}} \right) = - dk\left( {{a_1} + {a_{2k}}} \right) \cr & {\text{But, }}{a_{2k}} = {a_1} + \left( {2k - 1} \right)d \cr & \Rightarrow - d = \frac{{{a_1} - {a_{2k}}}}{{2k - 1}} \cr & \therefore {\text{The required sum}} = \frac{k}{{2k - 1}}\left( {a_1^2 - a_{2k}^2} \right) \cr & \Rightarrow M = \frac{k}{{2k - 1}} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section