Question

If a variable point $$P$$ on an ellipse of eccentricity $$e$$ is joined to the foci $${S_1}$$ and $${S_2}$$ then the incentre of the triangle $$P{S_1}{S_2}$$  lies on :

A. The major axis of the ellipse
B. The circle with radius $$e$$
C. Another ellipse of eccentricity $$\sqrt {\frac{{3 + {e^2}}}{4}} $$  
D. None of these
Answer :   Another ellipse of eccentricity $$\sqrt {\frac{{3 + {e^2}}}{4}} $$
Solution :
Ellipse mcq solution image
Let the ellipse be $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1......\left( 1 \right)$$
Then $${e^2} = 1 - \frac{{{b^2}}}{{{a^2}}}......\left( 2 \right)$$
Let a point $$P$$ on $$\left( 1 \right)$$ be $$\left( {a\,\cos \,\theta ,\,b\,\sin \,\theta } \right)$$
The coordinates of foci are $${S_1}\left( {ae,\,0} \right)$$   and $${S_2}\left( { - ae,\,0} \right)$$
Hence, $${S_1}P = a\left( {1 - e\,\cos \,\theta } \right)$$
$${S_2}P = a\left( {1 + e\,\cos \,\theta } \right)$$     and $${S_1}{S_2} = 2ae$$
If $$\left( {h,\,k} \right)$$  be the coordinates of in centre then
$$\eqalign{ & h = \frac{{2ae \times a\,\cos \,\theta + a\left( {1 - e\,\cos \,\theta } \right) \times - ae + a\left( {1 + e\,\cos \,\theta } \right) \times ae}}{{2ae + a\left( {1 - e\,\cos \,\theta } \right) + a\left( {1 + e\,\cos \,\theta } \right)}} \cr & = \frac{{2ae\,\cos \,\theta }}{{1 + e}}......\left( 3 \right) \cr & k = \frac{{be\,\sin \,\theta }}{{1 + e}}......\left( 4 \right) \cr} $$
Squaring and adding $$\left( 3 \right)$$ & $$\left( 4 \right)$$ we have,
$$\frac{{{h^2}}}{{4{a^2}}} + \frac{{{k^2}}}{{{b^2}}} = {\left( {\frac{e}{{1 + e}}} \right)^2}$$
$$\therefore $$  The locus of the point $$\left( {h,\,k} \right)$$  is
$$\frac{{{x^2}}}{{4{a^2}{\lambda ^2}}} + \frac{{{y^2}}}{{{b^2}{\lambda ^2}}} = 1,{\text{ where }}\lambda = \frac{e}{{1 + e}}$$
Which is another ellipse with eccentricity $$ = \sqrt {1 - \frac{{{b^2}}}{{4{a^2}}}} = \sqrt {\frac{{3 + {e^2}}}{4}} $$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section