Question

If $$A = {\sin ^2}x + {\cos ^4}x,$$    then for all real $$x$$:

A. $$\frac{{13}}{{16}} \leqslant A \leqslant 1$$
B. $$1 \leqslant A \leqslant 2$$
C. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
D. $$\frac{{3}}{{4}} \leqslant A \leqslant 1$$  
Answer :   $$\frac{{3}}{{4}} \leqslant A \leqslant 1$$
Solution :
$$\eqalign{ & A = {\sin ^2}x + {\cos ^4}x \cr & = {\sin ^2}x + {\cos ^2}x\left( {1 - {{\sin }^2}x} \right) \cr & = {\sin ^2}x + {\cos ^2}x - \frac{1}{4}{\left( {2\sin x.\cos x} \right)^2} \cr & = 1 - \frac{1}{4}{\sin ^2}\left( {2x} \right) \cr & {\text{Now }}0 \leqslant {\sin ^2}\left( {2x} \right) \leqslant 1 \cr & \Rightarrow \,\,0 \geqslant - \frac{1}{4}{\sin ^2}\left( {2x} \right) \geqslant - \frac{1}{4} \cr & \Rightarrow \,\,1 \geqslant 1 - \frac{1}{4}{\sin ^2}\left( {2x} \right) \geqslant 1 - \frac{1}{4} \cr & \Rightarrow \,\,1 \geqslant A \geqslant \frac{3}{4} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section