Question

If $$a \ne p,b \ne q,c \ne r$$    and \[\left| {\begin{array}{*{20}{c}} p&b&c\\ a&q&c\\ a&b&r \end{array}} \right| = 0\]    then the value of $$\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}}$$     is equal to

A. $$ - 1$$
B. $$1$$
C. $$ - 2$$
D. $$2$$  
Answer :   $$2$$
Solution :
Given \[\left| {\begin{array}{*{20}{c}} p&b&c\\ a&q&c\\ a&b&r \end{array}} \right| = 0\]
$${R_1} \to {R_1} - {R_2},{R_2} \to {R_2} - {R_3}$$      reduces the determinant to
\[\left| {\begin{array}{*{20}{c}} {p - a}&{b - q}&0\\ 0&{q - b}&{c - r}\\ a&b&r \end{array}} \right| = 0\]
$$ \Rightarrow \,\left( {p - a} \right)\left( {q - b} \right)r + a\left( {b - q} \right)\left( {c - r} \right) - b\left( {p - a} \right)\left( {c - r} \right) = 0$$
$$ \Rightarrow $$ Dividing throughout by $$\left( {p - a} \right)\left( {q - b} \right)\left( {r - c} \right),$$     we get
$$\eqalign{ & \Rightarrow \,\frac{r}{{r - c}} + \frac{a}{{p - a}} + \frac{b}{{q - b}} = 0 \cr & \Rightarrow \,\frac{r}{{r - c}} + \frac{a}{{p - a}} + \frac{b}{{q - b}} = 2 \cr} $$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section