Question

If $$A$$ is a square matrix of order $$n,$$ then $$adj\left( {adj\,A} \right)$$   is equal to

A. $${\left| A \right|^{n - 1}}A$$
B. $${\left| A \right|^{n}}A$$
C. $${\left| A \right|^{n - 2}}A$$  
D. None of these
Answer :   $${\left| A \right|^{n - 2}}A$$
Solution :
For any square matrix $$X,$$ we have $$X\left( {adj\,X} \right) = \left| X \right|{I_n}$$
Taking $$X = adj\,A,$$   we get
$$\eqalign{ & \left( {adj\,A} \right)\left[ {adj\left( {adj\,A} \right)} \right] = \left| {adj\,A} \right|{I_n} \cr & \Rightarrow \left( {adj\,A} \right)\left[ {adj\left( {adj\,A} \right)} \right] = {\left| A \right|^{n - 1}}{I_n} \cr & \left[ {\because \left| {adj\,A} \right| = {{\left| A \right|}^{n - 1}}} \right] \cr & \Rightarrow \left( {A\,adj\,A} \right)\left[ {adj\left( {adj\,A} \right)} \right] = {\left| A \right|^{n - 1}}A \cr & \left[ {\because A\,{I_n} = A} \right] \cr & \left( {\left| A \right|{I_n}} \right)\left( {adj\left( {adj\,A} \right)} \right) = {\left| A \right|^{n - 1}}A \cr & \Rightarrow adj\left( {adj\,A} \right) = {\left| A \right|^{n - 2}}A \cr} $$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section