Question

If $$\overrightarrow a $$ is a position vector of a point $$\left( {1,\, - 3} \right)$$  and $$A$$ is another point $$\left( { - 1,\,5} \right),$$   then what are the coordinates of the point $$B$$ such that $$\overrightarrow {AB} = \overrightarrow a \,?$$

A. $$\left( {2,\,0} \right)$$
B. $$\left( {0,\,2} \right)$$  
C. $$\left( { - 2,\,0} \right)$$
D. $$\left( {0,\, - 2} \right)$$
Answer :   $$\left( {0,\,2} \right)$$
Solution :
$$\eqalign{ & {\text{Let the coordinates of }}B{\text{ be }}\left( {x,{\text{ }}y} \right) \cr & \overrightarrow a = i - 3j \cr & {\text{P}}{\text{.V}}{\text{. of }}A{\text{ is}}\left( { - 1,\,5} \right) \cr & {\text{So,}}\,\overrightarrow {OA} = i + 5j,\,\overrightarrow {OB} = xi + yj \cr & \therefore \,\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow a \cr} $$
x+1 i + y5 j = i 3 j
$$\eqalign{ & \Rightarrow x + 1 = 1{\text{ and }}y - 5 = - 3 \cr & \Rightarrow x = 0{\text{ and }}y = 2 \cr & \therefore \,{\text{Coordinates of }}B{\text{ are }}\left( {0,\,2} \right) \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section