Question

If $$\overrightarrow a = \hat i + \hat j + \hat k,\,\overrightarrow b = 4\hat i + 3\hat j + 4\hat k$$       and $$\overrightarrow c = \hat i + \alpha \hat j + \beta \hat k$$    are coplanar and $$\left| {\overrightarrow c } \right| = \sqrt 3 ,$$   then :

A. $$\alpha = \sqrt 2 ,\,\beta = 1$$
B. $$\alpha = 1,\,\beta = \pm 1$$
C. $$\alpha = \pm 1,\,\beta = 1$$  
D. $$\alpha = \pm 1,\,\beta = - 1$$
Answer :   $$\alpha = \pm 1,\,\beta = 1$$
Solution :
Since $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ are coplanar therefore
\[\begin{array}{l} \left| \begin{array}{l} \,1\,\,\,1\,\,\,1\\ 4\,\,\,3\,\,\,4\\ 1\,\,\,\alpha \,\,\beta \end{array} \right| = 0\\ \Rightarrow \beta = 1\,;\,\left| {\overrightarrow c } \right| = \sqrt {1 + {\alpha ^2} + {\beta ^2}} = \sqrt 3 \\ \Rightarrow {\alpha ^2} + {\beta ^2} = 2\\ \Rightarrow {\alpha ^2} = 1\\ \therefore \,\alpha = \pm 1 \end{array}\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section