Question

If \[A = \left[ \begin{array}{l} \cos \theta \,\,\,\,\,\,\,\, - \sin \theta \\ \sin \theta \,\,\,\,\,\,\,\,\,\,\,\,\cos \theta \end{array} \right],\]     then the matrix $${A^{ - 50}}$$  when $$\theta = \frac{\pi }{{12}},$$   is equal to:

A. \[\left[ \begin{array}{l} \,\frac{1}{2}\,\,\,\,\,\,\,\,\,\, - \frac{{\sqrt 3 }}{2}\\ \frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2} \end{array} \right]\]
B. \[\left[ \begin{array}{l} \frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\, - \frac{1}{2}\\ \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\]
C. \[\left[ \begin{array}{l} \,\,\,\frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2}\\ - \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\]  
D. \[\left[ \begin{array}{l} \,\,\,\,\,\frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2}\\ - \frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2} \end{array} \right]\]
Answer :   \[\left[ \begin{array}{l} \,\,\,\frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2}\\ - \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\]
Solution :
\[A = \left[ \begin{array}{l} \cos \theta \,\,\,\,\,\,\, - \sin \theta \\ \sin \theta \,\,\,\,\,\,\,\,\,\,\cos \theta \end{array} \right]\]
$$ \Rightarrow \,\,\left| A \right| = 1$$
\[adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}} { + \cos \theta }&{ - \sin \theta }\\ { + \sin \theta }&{ + \cos \theta } \end{array}} \right]^T}\]
\[\,\,\,\,\, = \left[ \begin{array}{l} \,\,\cos \theta \,\,\,\,\,\,\,\,\,\sin \theta \\ - \sin \theta \,\,\,\,\,\,\,\,\cos \theta \end{array} \right]\]
\[ \Rightarrow \,\,{A^{ - 1}} = \left[ \begin{array}{l} \,\cos \theta \,\,\,\,\,\,\,\,\,\,\sin \theta \\ - \sin \theta \,\,\,\,\,\,\,\,\cos \theta \end{array} \right] = B\]
\[{B^2} = \left[ \begin{array}{l} \,\,\cos \theta \,\,\,\,\,\,\,\,\,\sin \theta \\ - \sin \theta \,\,\,\,\,\,\,\,\cos \theta \end{array} \right]\left[ \begin{array}{l} \,\,\cos \theta \,\,\,\,\,\,\,\,\,\sin \theta \\ - \sin \theta \,\,\,\,\,\,\,\,\cos \theta \end{array} \right]\]
\[ = \left[ \begin{array}{l} \,\,\cos 2\theta \,\,\,\,\,\,\,\,\,\sin 2\theta \\ - \sin 2\theta \,\,\,\,\,\,\,\,\cos 2\theta \end{array} \right]\]
\[ \Rightarrow \,\,{B^3} = \left[ \begin{array}{l} \,\,\cos 3\theta \,\,\,\,\,\,\,\,\,\sin 3\theta \\ - \sin 3\theta \,\,\,\,\,\,\,\,\cos 3\theta \end{array} \right]\]
\[ \Rightarrow \,\,{A^{ - 50}} = {B^{50}} = \left[ \begin{array}{l} \,\,\,\,\cos \left( {50\theta } \right)\,\,\,\,\,\,\,\sin \left( {50\theta } \right)\\ \, - \sin \left( {50\theta } \right) \,\,\,\,\,\,\,\,\,\cos \left( {50\theta } \right) \end{array} \right]\]
\[{\left( {{A^{ - 50}}} \right)_{\theta = \frac{\pi }{12}}} = \left[ \begin{array}{l} \,\frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2}\\ - \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\]
$$\left[ {\because \,\,\cos \left( {\frac{{50\pi }}{{12}}} \right) = \cos \left( {4\pi + \frac{\pi }{6}} \right) = \cos \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}} \right]$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section