Question

If \[A = \left[ {\begin{array}{*{20}{c}} {\cos \theta }&{\sin \theta }\\ { - \sin \theta }&{\cos \theta } \end{array}} \right]\]    then $$\mathop {\lim }\limits_{x \to \infty } \frac{1}{n}{A^n}$$   is

A. a null matrix  
B. an identity matrix
C. \[\left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&0 \end{array}} \right]\]
D. None of these
Answer :   a null matrix
Solution :
\[\begin{array}{l} {A^n} = \left[ {\begin{array}{*{20}{c}} {\cos \,n\theta }&{\sin \,n\theta }\\ { - \sin \,n\theta }&{\cos \,n\theta } \end{array}} \right]\\ \frac{1}{n}{A^n} = \left[ {\begin{array}{*{20}{c}} {\frac{{\cos \,n\theta }}{n}}&{\frac{{\sin \,n\theta }}{n}}\\ { - \frac{{\sin \,n\theta }}{n}}&{\frac{{\cos \,n\theta }}{n}} \end{array}} \right] \end{array}\]
But $$ - 1 \leqslant \cos \,n\theta \leqslant 1{\text{ and }} - 1 \leqslant \sin \,n\theta \leqslant 1$$
$$\mathop {\lim }\limits_{n \to \infty } \frac{{\sin \,n\theta }}{n} = 0,\mathop {\lim }\limits_{n \to \infty } \frac{{\cos \,n\theta }}{n} = 0$$
\[\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}{A^n} = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&0 \end{array}} \right].\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section