Question
If \[A = \left[ {\begin{array}{*{20}{c}}
a&b\\
b&a
\end{array}} \right]\] and \[{A^2} = \left[ {\begin{array}{*{20}{c}}
\alpha &\beta \\
\beta &\alpha
\end{array}} \right],\] then
A.
$$\alpha = 2ab,\beta = {a^2} + {b^2}$$
B.
$$\alpha = {a^2} + {b^2},\beta = ab$$
C.
$$\alpha = {a^2} + {b^2},\beta = 2ab$$
D.
$$\alpha = {a^2} + {b^2},\beta = {a^2} - {b^2}$$
Answer :
$$\alpha = {a^2} + {b^2},\beta = 2ab$$
Solution :
\[\begin{array}{l}
{A^2} = \left[ {\begin{array}{*{20}{c}}
\alpha &\beta \\
\beta &\alpha
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
a&b\\
b&a
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
a&b\\
b&a
\end{array}} \right]\\
= \left[ {\begin{array}{*{20}{c}}
{{a^2} + {b^2}}&{2ab}\\
{2ab}&{{a^2} + {b^2}}
\end{array}} \right];\alpha = {a^2} + {b^2};\beta = 2ab
\end{array}\]