Question

If \[A = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&2 \end{array}} \right],\]   then what is $$A^n$$ equal to ?

A. \[\left[ {\begin{array}{*{20}{c}} {{2^n}}&{{2^n}}\\ {{2^n}}&{{2^n}} \end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}} 2n&2n\\ 2n&2n \end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}} {{2^{2n - 1}}}&{{2^{2n - 1}}}\\ {{2^{2n - 1}}}&{{2^{2n - 1}}} \end{array}} \right]\]  
D. \[\left[ {\begin{array}{*{20}{c}} {{2^{2n + 1}}}&{{2^{2n + 1}}}\\ {{2^{2n + 1}}}&{{2^{2n + 1}}} \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} {{2^{2n - 1}}}&{{2^{2n - 1}}}\\ {{2^{2n - 1}}}&{{2^{2n - 1}}} \end{array}} \right]\]
Solution :
Given matrix is :
\[\begin{array}{l} A = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&2 \end{array}} \right]\\ {A^2} = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&2 \end{array}} \right]\,\left[ {\begin{array}{*{20}{c}} 2&2\\ 2&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {4 + 4}&{4 + 4}\\ {4 + 4}&{4 + 4} \end{array}} \right]\\ = \,\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{2^3}}\\ {{2^3}}&{{2^3}} \end{array}} \right]\\ {A^3} = \left[ {\begin{array}{*{20}{c}} 8&8\\ 8&8 \end{array}} \right]\,\left[ {\begin{array}{*{20}{c}} 2&2\\ 2&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {16 + 16}&{16 + 16}\\ {16 + 16}&{16 + 16} \end{array}} \right]\\ = \,\left[ {\begin{array}{*{20}{c}} {32}&{32}\\ {32}&{32} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{2^5}}&{{2^5}}\\ {{2^5}}&{{2^5}} \end{array}} \right] \end{array}\]
Going this way, we get,
\[\begin{array}{l} {A^4} = \left[ {\begin{array}{*{20}{c}} {{2^7}}&{{2^7}}\\ {{2^7}}&{{2^7}} \end{array}} \right]\\ \Rightarrow \,{A^n} = \left[ {\begin{array}{*{20}{c}} {{2^{2n - 1}}}&{{2^{2n - 1}}}\\ {{2^{2n - 1}}}&{{2^{2n - 1}}} \end{array}} \right] \end{array}\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section