Question
If \[{A} = \left[ {\begin{array}{*{20}{c}}
1&0\\
{ - 1}&7
\end{array}} \right]\] and \[{I} = \left[ {\begin{array}{*{20}{c}}
1&0\\
{ 0}&1
\end{array}} \right],\] then the value of $$k$$ so that $$A^2 = 8A + kI$$ is
A.
$$k = 7$$
B.
$$k = - 7$$
C.
$$k = 0$$
D.
None of these
Answer :
$$k = - 7$$
Solution :
\[\begin{array}{l}
{A^2} = \left[ {\begin{array}{*{20}{c}}
1&0\\
{ - 1}&7
\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}
1&0\\
{ - 1}&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0\\
{ - 8}&{49}
\end{array}} \right]\\
{\rm{and}}\,\,\,8A + kI = 8\left[ {\begin{array}{*{20}{c}}
1&0\\
{ - 1}&7
\end{array}} \right] + k\left[ {\begin{array}{*{20}{c}}
1&0\\
0&1
\end{array}} \right]\\
= \,\left[ {\begin{array}{*{20}{c}}
8&0\\
{ - 8}&{56}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
k&0\\
0&k
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{8 + k}&0\\
{ - 8}&{56 + k}
\end{array}} \right]\,\,{\rm{Thus}},\,\,{A^2} = 8A + kI\\
\Rightarrow \,\left[ {\begin{array}{*{20}{c}}
1&0\\
{ - 8}&{49}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{8 + k}&0\\
{ - 8}&{56 + k}
\end{array}} \right]\\
\Rightarrow \,1 = 8 + k\,\,{\rm{and}}\,\,56 + k = 49\\
\Rightarrow \,k = - 7
\end{array}\]