Question

If $$a, b, c, d$$   are positive real numbers such that $$a + b + c + d = 2,\,{\text{then }}M = \left( {a + b} \right)\left( {c + d} \right)$$         satisfies the relation

A. $$0 \leqslant M \leqslant 1$$  
B. $$1 \leqslant M \leqslant 2$$
C. $$2 \leqslant M \leqslant 3$$
D. $$3 \leqslant M \leqslant 4$$
Answer :   $$0 \leqslant M \leqslant 1$$
Solution :
As A.M. $$ \geqslant $$ G,M, for positive real numbers, we get
$$\eqalign{ & \frac{{\left( {a + b} \right) + \left( {c + d} \right)}}{2} \geqslant \sqrt {\left( {a + b} \right)\left( {c + d} \right)} \cr & \Rightarrow \,M \leqslant 1 \left( {{\text{Putting values}}} \right) \cr & {\text{Also }}\left( {a + b} \right)\left( {c + d} \right) > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\therefore \,\,a,b,c,d > 0} \right] \cr & \therefore \,\,0 \leqslant M \leqslant 1 \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section