Question
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ be three vectors such that $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = 4$$ then $$\left[ {\overrightarrow a \times \overrightarrow b \,\,\overrightarrow b \times \overrightarrow c \,\,\overrightarrow c \times \overrightarrow a } \right]$$ is equal to :
A.
8
B.
16
C.
64
D.
none of these
Answer :
16
Solution :
$$\eqalign{
& \left[ {\overrightarrow a \times \overrightarrow b \,\,\overrightarrow b \times \overrightarrow c \,\,\overrightarrow c \times \overrightarrow a } \right] = \left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow b \times \overrightarrow c } \right).\overrightarrow c \times \overrightarrow a \cr
& = \left\{ {\left( {\overrightarrow a \times \overrightarrow b .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a \times \overrightarrow b .\overrightarrow b } \right)\overrightarrow c } \right\}.\overrightarrow c \times \overrightarrow a \cr
& = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\,\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right] \cr
& = {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]^2} \cr
& = {4^2} \cr
& = 16 \cr} $$