Question

If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three vectors of equal magnitude and the angle between each pair of vectors is $$\frac{\pi }{3}$$ such that $$\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 6 $$     then $$\left| {\overrightarrow a } \right|$$ is equal to :

A. $$2$$
B. $$ - 1$$
C. $$1$$  
D. $$\frac{1}{3}\sqrt 6 $$
Answer :   $$1$$
Solution :
$$\eqalign{ & {\text{Let }}\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| = k.{\text{ Then}} \cr & {\text{cos}}\frac{\pi }{3} = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}} = \frac{{\overrightarrow a .\overrightarrow b }}{{{k^2}}}{\text{ or }}\overrightarrow a .\overrightarrow b = \frac{{{k^2}}}{2} \cr & {\text{Similarly, }}\overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = \frac{{{k^2}}}{2}.{\text{ So, }}\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a = \frac{{3{k^2}}}{2} \cr & {\text{Now, }}6 = {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right) \cr & \therefore \,6 = 3{k^2} + 2.\frac{{3{k^2}}}{2} \cr & \therefore \,k = \pm 1.\,{\text{But }}\left| {\overrightarrow a } \right|\,{\text{is positive}}{\text{. So, }}\left| {\overrightarrow a } \right| = 1. \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section