Question

If $$\vec a,\,\vec b,\,\vec c$$   are three non-zero, non-coplanar vectors and
$$\eqalign{ & \overrightarrow {{b_1}} = \overrightarrow b - \frac{{\overrightarrow b .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\,\,\overrightarrow {{b_2}} = \overrightarrow b + \frac{{\overrightarrow b .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a , \cr & \overrightarrow {{c_1}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow {{b_1}} ,\,\,\overrightarrow {{c_2}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - \frac{{\overrightarrow {{b_1}} .\overrightarrow c }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} , \cr & \overrightarrow {{c_3}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow {{b_1}} ,\,\,\overrightarrow {{c_4}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a = \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\vec b} \right|}^2}}}\overrightarrow {{b_1}} , \cr} $$
then the set of orthogonal vectors is :

A. $$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_3}} } \right)$$
B. $$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_2}} } \right)$$  
C. $$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_1}} } \right)$$
D. $$\left( {\overrightarrow a ,\,\overrightarrow {{b_2}} ,\,\overrightarrow {{c_2}} } \right)$$
Answer :   $$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_2}} } \right)$$
Solution :
We observe that
$$\eqalign{ & \overrightarrow a .\overrightarrow {{b_1}} = \overrightarrow a .\overrightarrow b - \left( {\frac{{\overrightarrow {b.} \overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}} \right)\overrightarrow a .\overrightarrow a = \overrightarrow a .\overrightarrow b - \overrightarrow a .\overrightarrow b = 0 \cr & \overrightarrow a .\overrightarrow {{c_2}} = \overrightarrow a \left( {\overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - \frac{{\overrightarrow c .\overrightarrow {{b_1}} }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} } \right) \cr & = \overrightarrow a .\overrightarrow c - \overrightarrow c .\frac{{\overrightarrow a .\overrightarrow c }}{{{{\left| {\overrightarrow a } \right|}^2}}}{\left| {\overrightarrow a } \right|^2} - \frac{{\overrightarrow c .\overrightarrow {{b_1}} }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\left( {\overrightarrow a .\overrightarrow {{b_1}} } \right) \cr & = \overrightarrow a .\overrightarrow c - \overrightarrow a .\overrightarrow c - 0\,\,\,\,\,\,\,\,\,\left[ {\because \,\,\overrightarrow a .\overrightarrow {{b_1}} = 0} \right] \cr & = 0 \cr & {\text{And }}\overrightarrow {{b_1}} .\overrightarrow {{c_2}} = \overrightarrow {{b_1}} .\left( {\overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - \frac{{\overrightarrow c .\overrightarrow {{b_1}} }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} } \right) \cr & = \overrightarrow {{b_1}} .\overrightarrow c - \frac{{\left( {\overrightarrow c .\overrightarrow a } \right)\left( {\overrightarrow {{b_1}} .\overrightarrow a } \right)}}{{{{\left| {\overrightarrow a } \right|}^2}}} - \frac{{\overrightarrow c .\overrightarrow {{b_1}} }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} .\overrightarrow {{b_1}} \cr & = \overrightarrow {{b_1}} .\overrightarrow c - 0 - \overrightarrow {{b_1}} .\overrightarrow c \,\,\,\,\,\,\,\,\,\left[ {{\text{Using }}\overrightarrow {{b_1}} .\overrightarrow a = 0} \right] \cr & = 0 \cr} $$
Hence $$\overrightarrow a .\overrightarrow {{b_1}} = \overrightarrow a .\overrightarrow {{c_2}} = \overrightarrow {{b_1}} .\overrightarrow {{c_2}} = 0$$
$$ \Rightarrow \left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_2}} } \right)$$     is a set of orthogonal vectors.

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section