Question
If \[\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \] are noncoplanar nonzero vectors then \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow b \times \overrightarrow a } \right) + \left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow c \times \overrightarrow b } \right)\] is equal to :
A.
\[{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]^2}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
B.
\[\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
C.
\[\overrightarrow 0 \]
D.
none of these
Answer :
\[\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
Solution :
\[\begin{array}{l}
\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow c } \right) = \left( {\overrightarrow a \times \overrightarrow b .\overrightarrow c } \right)\overrightarrow a - \left( {\overrightarrow a \times \overrightarrow b .\overrightarrow a } \right)\overrightarrow c \\
= \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow a - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow c \\
= \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow a \\
{\rm{Similarly,}}\,\left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow b \times \overrightarrow a } \right) = \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\overrightarrow b \\
\left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow c \times \overrightarrow b } \right) = \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]\overrightarrow c \\
\therefore {\rm{ the\, expression}} = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)
\end{array}\]