Question

If $$a, b, c$$  and $$u, v, w$$  are complex numbers representing the vertices of two triangles such that $$c = \left( {1 - r} \right)a + rb\,\,{\text{and }}w = \left( {1 - r} \right)u + rv,$$        where $$r$$ is a complex number, then the two triangles

A. have the same area
B. are similar  
C. are congruent
D. none of these
Answer :   are similar
Solution :
Let $$ABC$$  be the $$\Delta $$ with vertices $$a, b, c$$  and $$PQR$$   be the $$\Delta $$ with vertices $$u, v, w.$$
Then $$c = (1 - r)a + rb$$
Complex Number mcq solution image
$$\eqalign{ & \Rightarrow \,\,c - a = r\left( {b - a} \right) \cr & \Rightarrow \,\,\frac{{c - a}}{{b - a}} = r\,\,\,\,\,......\left( 1 \right) \cr & \Rightarrow \,\,w = \left( {1 - r} \right)u + rv \cr & \Rightarrow \,\,\frac{{w - u}}{{v - u}} = r\,\,\,\,......\left( 2 \right) \cr} $$
From (1) and (2) $$\left| {\frac{{c - a}}{{b - a}}} \right| = \left| {\frac{{w - u}}{{v - u}}} \right|\,\,{\text{and}}$$
$$\eqalign{ & {\text{arg}}\left( {\frac{{c - a}}{{b - a}}} \right) = {\text{arg}}\left( {\frac{{w - u}}{{v - u}}} \right) \cr & \Rightarrow \,\,\frac{{AC}}{{AB}} = \frac{{PR}}{{PQ}}\,\,{\text{and }}\angle CAB = \angle RPQ \cr & \Rightarrow \,\,\Delta ABC \sim \Delta PQR \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section