Question
      
        If $$\overrightarrow a ,\,\overrightarrow b $$  are nonzero and noncollinear vectors then $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow i } \right]\overrightarrow i  + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow j } \right]\overrightarrow j  + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow k } \right]\overrightarrow k $$         is equal to :      
       A.
        $$\overrightarrow a  + \overrightarrow b $$              
       B.
        $$\overrightarrow a  \times \overrightarrow b $$                 
              
       C.
        $$\overrightarrow a  - \overrightarrow b $$              
       D.
        $$\overrightarrow b  \times \overrightarrow a $$              
            
                Answer :  
        $$\overrightarrow a  \times \overrightarrow b $$      
             Solution :
        $$\eqalign{
  & {\text{Let  }}\overrightarrow a  \times \overrightarrow b  = x\overrightarrow i  + y\overrightarrow j  + z\overrightarrow k   \cr 
  & \therefore \overrightarrow a  \times \overrightarrow b .\overrightarrow i  = x\,\,\overrightarrow a  \times \overrightarrow b .\overrightarrow j  = y\,\,\overrightarrow a  \times \overrightarrow b .\overrightarrow k  = z  \cr 
  & \therefore \overrightarrow a  \times \overrightarrow b  = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow i } \right]\overrightarrow i  + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow j } \right]\overrightarrow j  + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow k } \right]\overrightarrow k  \cr} $$