Question

If $$\vec a,\,\vec b$$  and $$\vec c$$ are unit vectors, then $${\left| {\vec a - \vec b} \right|^2} + {\left| {\vec b - \vec c} \right|^2} + {\left| {\vec c - \vec a} \right|^2}$$       does NOT exceed :

A. $$4$$
B. $$9$$  
C. $$8$$
D. $$6$$
Answer :   $$9$$
Solution :
$$\hat a,\,\hat b,\,\hat c$$   are units vectors.
$$\eqalign{ & \therefore \hat a.\hat a = \hat b.\hat b = \hat c.\hat c = 1 \cr & {\text{Now, }}x = {\left| {\hat a - \hat b} \right|^2} + {\left| {\hat b - \hat c} \right|^2} + {\left| {\hat c - \hat a} \right|^2} \cr & = \hat a.\hat a + \hat b.\hat b - 2\hat a.\hat b + \hat b.\hat b + \hat c.\hat c - 2\hat b.\hat c + c.\hat c + \hat a.\hat a - 2\hat c.\hat a \cr & = 6 - 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right).....(1) \cr & {\text{Also}}, \cr & \Rightarrow \left| {\hat a + \hat b + \hat c} \right| \geqslant 0\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow {\left| {\hat a + \hat b + \hat c} \right|^2} \geqslant 0 \cr & \Rightarrow \hat a.\hat a + \hat b.\hat b + \hat c.\hat c + 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \geqslant 0 \cr & \Rightarrow 3 + 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \geqslant 0 \cr & \Rightarrow 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \geqslant - 3 \cr & \Rightarrow - 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \leqslant 3 \cr & \Rightarrow 6 - 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \leqslant 9.....(2) \cr} $$
From (1) and (2), $$x \leqslant 9$$
$$\therefore \,x$$ does not exceed 9

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section