Question

If $$A, B$$  and $$C$$ are three sets such that $$A \cap B = A \cap C$$    and $$A \cup B = A \cup C,$$    then

A. $$A = C$$
B. $$B = C$$  
C. $$A \cap B = \phi $$
D. $$A = B$$
Answer :   $$B = C$$
Solution :
Let $$x \in A\,\,{\text{and }}x \in B$$
$$\eqalign{ & \Leftrightarrow \,x \in A \cup B \cr & \Leftrightarrow \,\,x \in A \cup C\,\,\,\left( {\because A \cup B = A \cup C} \right) \cr & \Leftrightarrow x \in C \cr & \therefore \,\,B = C. \cr} $$
Let $$x \in A\,\,{\text{and }}x \in B$$
$$\eqalign{ & \Leftrightarrow \,x \in A \cap B \cr & \Leftrightarrow \,\,x \in A \cap C\,\,\,\left( {\because A \cap B = A \cap C} \right) \cr & \Leftrightarrow x \in C \cr & \therefore \,\,B = C. \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section