Question

If $$\vec a$$ and $$\vec b$$ are two unit vectors such that $$\vec a + 2\vec b$$  and $$5\vec a - 4\vec b$$  are perpendicular to each other then the angle between $$\vec a$$ and $$\vec b$$ is :

A. $${45^ \circ }$$
B. $${60^ \circ }$$  
C. $${\cos ^{ - 1}}\left( {\frac{1}{3}} \right)$$
D. $${\cos ^{ - 1}}\left( {\frac{2}{7}} \right)$$
Answer :   $${60^ \circ }$$
Solution :
Given that $${\vec a}$$ and $${\vec b}$$ are two unit vectors
$$\therefore \left| {\vec a} \right| = 1{\text{ and }}\left| {\vec b} \right| = 1$$
Also, given that ($$\left( {\vec a + 2\vec b} \right) \bot \left( {5\vec a - 4\vec b} \right)$$
$$\eqalign{ & \Rightarrow \left( {\vec a + 2\vec b} \right).\left( {5\vec a - 4\vec b} \right) = 0 \cr & \Rightarrow 5{\left| {\vec a} \right|^2} - 8{\left| {\vec b} \right|^2} - 4\vec a.\vec b + 10\vec b.\vec a = 0 \cr & \Rightarrow 5 - 8 + 6\vec a.\vec b = 0 \cr & \Rightarrow 6\left| {\vec a} \right|\,\left| {\vec b} \right|\,\cos \,\theta = 3 \cr} $$
[where $$\theta $$ is the angle between $${\vec a}$$ and $${\vec b}$$ ]
$$ \Rightarrow \cos \,\theta = \frac{1}{2}\,\,\,\,\, \Rightarrow \theta = {60^ \circ }$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section