Question

If $$A$$ and $$B$$ are two sets then $$\left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right)$$      is equal to :

A. $$A \cup B$$  
B. $${A \cap B}$$
C. $$A$$
D. $$B'$$
Answer :   $$A \cup B$$
Solution :
$$\eqalign{ & \left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right) \cr & A - B = A \cap B' \cr & B - A = B \cap A' \cr} $$
$$\left( {A - B} \right) \cup \left( {B - A} \right) = $$     the elements that are only in $$A$$ and $$B$$, which are not common in $$A$$ and $$B$$.
$$\left( {A \cap B} \right) = $$   elements common in $$A$$ and $$B$$.
$$\left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right) = $$       elements in $$A$$ and $$B$$ and common in both $$ = A \cup B$$
Hence, option A is correct.

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section