Question

If $$A$$ and $$B$$ are positive acute angles satisfying $$3\,{\cos ^2}A + 2\,{\cos ^2}B = 4{\text{ and }}\frac{{3\sin A}}{{\sin B}} = \frac{{2\cos B}}{{\cos A}}.$$         Then the value of $$A + 2B$$  is equal to :

A. $$\frac{\pi }{6}$$
B. $$\frac{\pi }{2}$$  
C. $$\frac{\pi }{3}$$
D. $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{2}$$
Solution :
$$\eqalign{ & {\text{Given}},3\,{\cos ^2}A + 2\,{\cos ^2}B = 4 \cr & \Rightarrow 2\,{\cos ^2}B - 1 = 4 - 3\,{\cos ^2}A - 1 \cr & \Rightarrow \cos 2B = 3\left( {1 - {{\cos }^2}A} \right) = 3\,{\sin ^2}A\,\,.....\left( 1 \right) \cr & {\text{and }}2\cos B\sin B = 3\sin A\cos A \cr & \sin 2B = 3\sin A\cos A\,\,.....\left( 2 \right) \cr & {\text{Now}},\cos \left( {A + 2B} \right) = \cos A\cos 2B - \sin A\sin 2B \cr & = \cos A\left( {3\,{{\sin }^2}A} \right) - \sin A\left( {3\sin A\cos A} \right) = 0\left[ {{\text{using eqs}}{\text{. }}\left( 1 \right){\text{and}}\left( 2 \right)} \right] \cr & \Rightarrow A + 2B = \frac{\pi }{2} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section