Question

If \[A = \left[ {\begin{array}{*{20}{c}} 0&c&{ - b} \\ { - c}&0&a \\ b&{ - a}&0 \end{array}} \right]\]    and \[B = \left[ {\begin{array}{*{20}{c}} {{a^2}}&{ab}&{ac} \\ {ab}&{{b^2}}&{bc} \\ {ac}&{bc}&{{c^2}} \end{array}} \right]\]    then $$AB$$  is equal to

A. $$0$$  
B. $$I$$
C. $$2I$$
D. None of these
Answer :   $$0$$
Solution :
\[\begin{array}{l} A = \left[ {\begin{array}{*{20}{c}} 0&c&{ - b}\\ { - c}&0&a\\ b&{ - a}&0 \end{array}} \right],\,B = \left[ {\begin{array}{*{20}{c}} {{a^2}}&{ab}&{ac}\\ {ab}&{{b^2}}&{bc}\\ {ac}&{bc}&{{c^2}} \end{array}} \right]\\ AB = \left[ {\begin{array}{*{20}{c}} 0&c&{ - b}\\ { - c}&0&a\\ b&{ - a}&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{a^2}}&{ab}&{ac}\\ {ab}&{{b^2}}&{bc}\\ {ac}&{bc}&{{c^2}} \end{array}} \right]\\ AB = \left[ \begin{array}{l} 0 + abc - abc\,\,\,\,\,\,\,\,\,\,0 + {b^2}c - {b^2}c\,\,\,\,\,\,\,\,\,\,\,\,0 + b{c^2} - b{c^2}\\ - {a^2}c + 0 + {a^2}c\,\,\,\,\,\,\,\,\, - abc + 0 + abc\,\,\,\,\,\,\,\, - a{c^2} + 0 + a{c^2}\\ {a^2}b - {a^2}b + 0\,\,\,\,\,\,\,\,\,\,a{b^2} - a{b^2} + 0\,\,\,\,\,\,\,\,\,\,\,abc - abc + 0 \end{array} \right]\\ AB = \left[ \begin{array}{l} 0\,\,\,\,\,0\,\,\,\,\,0\\ 0\,\,\,\,\,0\,\,\,\,\,0\\ 0\,\,\,\,\,0\,\,\,\,\,0 \end{array} \right]\\ AB = {0_{3 \times 3}}......\left( 1 \right)\\ BA = \left[ {\begin{array}{*{20}{c}} {{a^2}}&{ab}&{ac}\\ {ab}&{{b^2}}&{bc}\\ {ac}&{bc}&{{c^2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&c&{ - b}\\ { - c}&0&a\\ b&{ - a}&0 \end{array}} \right]\\ BA = \left[ \begin{array}{l} 0 + abc - abc\,\,\,\,\,\,\,\,\,\,0 + {b^2}c - {b^2}c\,\,\,\,\,\,\,\,\,\,\,\,0 + b{c^2} - b{c^2}\\ - {a^2}c + 0 + {a^2}c\,\,\,\,\,\,\,\,\, - abc + 0 + abc\,\,\,\,\,\,\,\, - a{c^2} + 0 + a{c^2}\\ {a^2}b - {a^2}b + 0\,\,\,\,\,\,\,\,\,\,a{b^2} - a{b^2} + 0\,\,\,\,\,\,\,\,\,\,\,abc - abc + 0 \end{array} \right]\\ BA = \left[ \begin{array}{l} 0\,\,\,\,\,0\,\,\,\,\,0\\ 0\,\,\,\,\,0\,\,\,\,\,0\\ 0\,\,\,\,\,0\,\,\,\,\,0 \end{array} \right]\\ BA = {0_{3 \times 3}}......\left( 2 \right)\\ {\rm{From\, equation\, }}\left( 1 \right){\rm{ \,and\, }}\left( 2 \right)\\ AB = BA = {0_{3 \times 3}} \end{array}\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section