Question

If $$A = \left( {1,\,1,\,1} \right),\,B = \left( {2,\, - 1,\,3} \right),\,C = \left( {0,\,4,\, - 2} \right),\,D = \left( {1,\,2,\,\lambda } \right)$$             and $$AB,\,AC$$   and $$AD$$  are coplanar then $$\lambda $$ is :

A. $$1$$
B. $$0$$  
C. $$ - 1$$
D. $$3$$
Answer :   $$0$$
Solution :
Direction ratios of $$AB,\,AC$$   and $$AD$$  are respectively $$1,\, - 2,\,2;\, - 1,\,3,\, - 3;\,0,\,1,\,\lambda - 1.$$         They are coplanar $$ \Rightarrow $$  there is a line with direction ratios $$l,\,m,\,n$$   which is perpendicular to $$AB,\,AC$$   and $$AD.$$
$$\therefore \,l - 2m + 2n = 0,\, - l + 3m - 3n = 0,\,0.l + m + \left( {\lambda - 1} \right)n = 0$$
Eliminating $$l,\,m,\,n$$   we get \[\left| \begin{array}{l} \,\,\,\,\,\,1\,\,\, - 2\,\,\,\,\,\,\,\,\,2\\ - 1\,\,\,\,\,\,\,\,3\,\,\,\,\, - 3\\ \,\,\,\,\,\,0\,\,\,\,\,\,\,\,1\,\,\,\,\,\lambda - 1 \end{array} \right| = 0 \Rightarrow \lambda = 0.\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section