Question

If $${a_1},{a_2},.....,{a_n}$$    are in H.P., then the expression $${a_1}{a_2} + {a_2}{a_3} + ..... + {a_{n - 1}}{a_n}$$      is equals to

A. $$n\left( {{a_1} - {a_n}} \right)$$
B. $$\left( {n - 1} \right)\left( {{a_1} - {a_n}} \right)$$
C. $$n{a_1}{a_n}$$
D. $$\left( {n - 1} \right){a_1}{a_n}$$  
Answer :   $$\left( {n - 1} \right){a_1}{a_n}$$
Solution :
$$\eqalign{ & \frac{1}{{{a_2}}} - \frac{1}{{{a_1}}} = \frac{1}{{{a_3}}} - \frac{1}{{{a_2}}} = ...... = \frac{1}{{{a_n}}} - \frac{1}{{{a_{n - 1}}}} = d\,\,\,\left( {{\text{say}}} \right) \cr & {\text{Then }}{a_1}{a_2} = \frac{{{a_1} - {a_2}}}{d},\,{a_2}{a_3} = \frac{{{a_2} - {a_3}}}{d},......,{a_{n - 1}}{a_n} = \frac{{{a_{n - 1}} - {a_n}}}{d} \cr & \therefore \,\,{a_1}{a_2} + {a_2}{a_3} + ...... + {a_{n - 1}}{a_n} \cr & = \frac{{{a_1} - {a_2}}}{d} + \frac{{{a_2} - {a_3}}}{d} + ...... + \frac{{{a_{n - 1}}{a_n}}}{d} \cr & = \frac{1}{d}\left[ {{a_1} - {a_2} + {a_2} - {a_3} + ...... + {a_{n - 1}}{a_n}} \right] = \frac{{{a_1} - {a_n}}}{d} \cr & {\text{Also, }}\frac{1}{{{a_n}}} = \frac{1}{{{a_1}}} + \left( {n - 1} \right)d \cr & \Rightarrow \,\,\frac{{{a_1} - {a_n}}}{{{a_1}{a_n}}} = \left( {n - 1} \right)d \cr & \Rightarrow \,\,\frac{{{a_1} - {a_n}}}{d} = \left( {n - 1} \right){a_1}{a_n} \cr & {\text{Which is the required result}}{\text{.}} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section