Question

If $$\vec a = \frac{1}{{\sqrt {10} }}\left( {3\hat i + \hat k} \right)$$    and $$\vec b = \frac{1}{7}\left( {2\hat i + 3\hat j - 6\hat k} \right),$$     then the value of $$\left( {2\vec a - \vec b} \right)\left[ {\left( {\vec a \times \vec b} \right) \times \left( {\vec a + 2\vec b} \right)} \right]$$      is :

A. $$ - 3$$
B. $$5$$
C. $$3$$
D. $$ - 5$$  
Answer :   $$ - 5$$
Solution :
$$\eqalign{ & {\text{We have, }}\vec a.\vec b = 0,\,\,\,\vec a.\vec a = 1,\,\,\vec b.\vec b = 1 \cr & \left( {2\vec a - \vec b} \right).\left[ {\left( {\vec a \times \vec b} \right) \times \left( {\vec a + 2\vec b} \right)} \right] \cr & = \left( {2\vec a - \vec b} \right).\left[ {\left\{ {\vec a.\left( {\vec a + 2\vec b} \right)} \right\}\vec b - \left\{ {\vec b.\left( {\vec a + 2\vec b} \right)\vec a} \right\}} \right] \cr & = \left( {2\vec a - \vec b} \right).\left[ {\left( {\vec a.\vec a + 2\vec a.\vec b} \right)\vec b - \left( {\vec a.\vec b + 2\vec b.\vec b} \right)\vec a} \right] \cr & = \left( {2\vec a - \vec b} \right).\left[ {\left( {\vec b - 2\vec a} \right)} \right] \cr & = 4\vec a.\vec b - \vec b.\vec b - 4\vec a.\vec a \cr & = - 5 \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section