Question

If $$5\left( {{{\tan }^2}x - {{\cos }^2}x} \right) = 2\cos 2x + 9,$$       then the value of $$\cos 4x$$  is:

A. $$ - \frac{7}{9}$$  
B. $$ - \frac{3}{5}$$
C. $$ \frac{1}{3}$$
D. $$ \frac{2}{9}$$
Answer :   $$ - \frac{7}{9}$$
Solution :
We have
$$\eqalign{ & 5\,{\tan ^2}x - 5\,{\cos ^2}x = 2\left( {{2\cos^2} 2x - 1} \right) + 9 \cr & \Rightarrow \,\,5\,{\tan ^2}x - 5\,{\cos ^2}x = 4\,{\cos ^2}x - 2 + 9 \cr & \Rightarrow \,\,5\,{\tan ^2}x = 9\,{\cos ^2}x + 7 \cr & \Rightarrow \,\,5\left( {{{\sec }^2}x - 1} \right) = 9\,{\cos ^2}x + 7 \cr & {\text{Let }}{\cos ^2}x = t \cr & \Rightarrow \,\,\frac{5}{t} - 9t - 12 = 0 \cr & \Rightarrow \,\,9{t^2} + 12t - 5 = 0 \cr & \Rightarrow \,\,9{t^2} + 15t - 3t - 5 = 0 \cr & \Rightarrow \,\,\left( {3t - 1} \right)\left( {3t + 5} \right) = 0 \cr & \Rightarrow \,\,t = \frac{1}{3}\,\,{\text{as }}\,t \ne - \frac{5}{3}. \cr & cos2x = 2co{s^2}x - 1 = 2\left( {\frac{1}{3}} \right) - 1 \cr & = - \frac{1}{3} \cr & \cos 4x = 2{\cos ^2}2x - 1 = 2{\left( { - \frac{1}{3}} \right)^2} - 1 \cr & = - \frac{7}{9} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section