Question
If \[{\left[ {\begin{array}{*{20}{c}}
1&x&1
\end{array}} \right]_{1 \times 3}}{\left[ {\begin{array}{*{20}{c}}
1&3&2\\
2&5&1\\
{15}&3&2
\end{array}} \right]_{3 \times 3}}{\left[ {\begin{array}{*{20}{c}}
1\\
2\\
x
\end{array}} \right]_{3 \times 1}} = 0,\] then $$x$$ is
A.
$$2$$
B.
$$- 2$$
C.
$$14$$
D.
None of these
Answer :
$$- 2$$
Solution :
\[\begin{array}{l}
{\rm{Given,\, }}{\left[ {\begin{array}{*{20}{c}}
1&x&1
\end{array}} \right]_{1 \times 3}}{\left[ {\begin{array}{*{20}{c}}
1&3&2\\
2&5&1\\
{15}&3&2
\end{array}} \right]_{3 \times 3}}{\left[ {\begin{array}{*{20}{c}}
1\\
2\\
x
\end{array}} \right]_{3 \times 1}} = 0\\
\Rightarrow \left[ {1 + 2x + 15\,\,\,3 + 5x + 3\,\,\,2 + x + 2} \right]\left[ \begin{array}{l}
1\\
2\\
x
\end{array} \right] = 0\\
\Rightarrow \left[ {16 + 2x + 15\,\,\,3 + 5x + 3\,\,\,2 + x + 2} \right]\left[ \begin{array}{l}
1\\
2\\
x
\end{array} \right] = 0\\
\Rightarrow \left[ {\left( {16 + 2x} \right) \cdot 1 + \left( {6 + 5x} \right) \cdot 2 + \left( {4 + x} \right) \cdot x} \right] = 0\\
\Rightarrow \left( {16 + 2x} \right) + \left( {12 + 10x} \right) + \left( {4x + {x^2}} \right) = 0\\
\Rightarrow {x^2} + 16x + 28 = 0\\
\Rightarrow \left( {x + 14} \right)\left( {x + 2} \right) = 0\\
\Rightarrow x + 14 = 0{\rm{ \,\,or\,\, }}x + 2 = 0\\
{\rm{Hence, }}x = - 14{\rm{ }}\,{\rm{\,\,or\,\, }}x = - 2
\end{array}\]