Question

If $$1,\omega ,{\omega ^2}$$  are the three cube roots of unity, then what is $$\frac{{\left( {a{\omega ^6} + b{\omega ^4} + c{\omega ^2}} \right)}}{{\left( {b + c{\omega ^{10}} + a{\omega ^8}} \right)}}$$    equal to ?

A. $$\frac{a}{b}$$
B. $$b$$
C. $$\omega $$  
D. $$\omega^2 $$
Answer :   $$\omega $$
Solution :
$$1,\omega $$  and $$\omega^2 $$ are the three cube roots of unity.
$$ \Rightarrow 1 + \omega + {\omega ^2} = 0{\text{ and }}{\omega ^3} = 1.$$
The given expression
$$\eqalign{ & \frac{{a{\omega ^6} + b{\omega ^4} + c{\omega ^2}}}{{b + c{\omega ^{10}} + a{\omega ^8}}} = \frac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}\left[ {{\omega ^6} = 1,{\omega ^4} = \omega } \right] \cr & = \frac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\omega \left( {b + c\omega + a{\omega ^2}} \right)}}\left[ {{\text{Multiplying }}{N^r}{\text{ and }}{D^r}{\text{ by }}\omega {\text{.}}} \right] \cr & = \frac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {a{\omega ^3} + b\omega + c{\omega ^2}} \right)}} = \frac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {a + b\omega + c{\omega ^2}} \right)}} = \omega \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section