Question

If $${\left( {1 + x} \right)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ..... + {C_{15}}{x^{15}}$$         then $${C_2} + 2{C_3} + 3{C_4} + ..... + 14{C_{15}}$$       is equal to

A. $$14 \cdot {2^{14}}$$
B. $${13 \cdot 2^{14}} + 1$$  
C. $${13 \cdot 2^{14}} - 1$$
D. None of these
Answer :   $${13 \cdot 2^{14}} + 1$$
Solution :
The general term $${T_r} = \left( {r - 1} \right){\,^{15}}{C_r},r = 2,3,4,.....,15$$
$$\eqalign{ & \therefore {T_r} = r{\,^{15}}{C_r} - {\,^{15}}{C_r} \cr & = 15 \cdot {\,^{14}}{C_{r - 1}} - {\,^{15}}{C_r}\left[ {\because r \cdot {\,^n}{C_r} = n \cdot {\,^{n - 1}}{C_{r - 1}}} \right] \cr & \therefore \sum\limits_{r = 2}^{15} {{T_r} = 15\left[ {^{14}{C_1} + {\,^{14}}{C_2} + ..... + {\,^{14}}{C_{14}}} \right]} - \left[ {^{15}{C_2} + {\,^{15}}{C_3} + ..... + {\,^{15}}{C_{15}}} \right] \cr & = 15\left[ {{2^{14}} - 1} \right] - \left[ {{2^{15}} - 1 - 15} \right] \cr & = \left( {15 - 2} \right){2^{14}} + 1 = 13 \cdot {2^{14}} + 1 \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section