Question

If 1, $${\log _9}\left( {{3^{1 - x}} + 2} \right),{\log_3} \left( {{{4.3}^x} - 1} \right)$$      are in A.P. then $$x$$ equals

A. $${\log _3}4$$
B. $$1 - {\log _3}4$$  
C. $$1 - {\log _4}3$$
D. $${\log _4}3$$
Answer :   $$1 - {\log _3}4$$
Solution :
$$\eqalign{ & 1,{\log _9}\left( {{3^{1 - x}} + 2} \right),{\log_3} \left( {{{4.3}^x} - 1} \right){\text{ are in A}}{\text{.P}}{\text{.}} \cr & \Rightarrow \,\,{\text{2lo}}{{\text{g}}_9}\left( {{3^{1 - x}} + 2} \right) = 1 + {\log _3}\left( {{{4.3}^x} - 1} \right) \cr & \Rightarrow \,\,{\log _3}\left( {{3^{1 - x}} + 2} \right) = {\log _3}3 + {\log _3}\left( {{{4.3}^x} - 1} \right) \cr & \Rightarrow \,\,{\log _3}\left( {{3^{1 - x}} + 2} \right) = {\log _3}\left[ {3\left( {{{4.3}^x} - 1} \right)} \right] \cr & \Rightarrow \,\,{3^{1 - x}} + 2 = 3\left( {{{4.3}^x} - 1} \right) \cr & \Rightarrow \,\,{3.3^{ - x}} + 2 = {12.3^x} - 3. \cr & {\text{Put }}{{\text{3}}^x} = t \cr & \Rightarrow \,\,\frac{3}{t} + 2 = 12t - 3{\text{ or 12}}{t^2} - 5t - 3 = 0; \cr & {\text{Hence }}t = - \frac{1}{3},\frac{3}{4} \cr & \Rightarrow \,\,{3^x} = \frac{3}{4}\left( {{\text{as }}{{\text{3}}^x} \ne - ve} \right) \cr & \Rightarrow \,\,x = {\log _3}\left( {\frac{3}{4}} \right){\text{ or }}x = {\log _3}3 - {\log _3}4 \cr & \Rightarrow \,\,x = 1 - {\log _3}4 \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section