Question

If $$0 < \phi < \frac{\pi }{2},x = \sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\phi } ,y = \sum\limits_{n = 0}^\infty {{{\sin }^{2n}}\phi } $$         and $$z = \sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\phi \cdot {{\sin }^{2n}}\phi } $$     then

A. $$xyz = xz + y$$
B. $$xyz = xy + z$$  
C. $$xyz = x + y + z$$
D. $$xyz = yz + x$$
Answer :   $$xyz = xy + z$$
Solution :
$$\eqalign{ & x = 1 + {\cos ^2}\phi + {\cos ^4}\phi + .....\,{\text{to }}\infty = \frac{1}{{1 - {{\cos }^2}\phi }} = \frac{1}{{{{\sin }^2}\phi }}. \cr & {\text{Similarly, }}y = \frac{1}{{1 - {{\sin }^2}\phi }} = \frac{1}{{{{\cos }^2}\phi }},z = \frac{1}{{1 - {{\cos }^2}\phi \cdot {{\sin }^2}\phi }} \cr & \therefore \,\,xyz = \frac{1}{{{{\sin }^2}\phi \cdot {{\cos }^2}\phi \left( {1 - {{\sin }^2}\phi \,{{\cos }^2}\phi } \right)}} \cr & xyz = \frac{{\left( {1 - {{\sin }^2}\phi \cdot {{\cos }^2}\phi } \right) + {{\sin }^2}\phi \cdot {{\cos }^2}\phi }}{{{{\sin }^2}\phi \cdot {{\cos }^2}\phi \left( {1 - {{\sin }^2}\phi \,{{\cos }^2}\phi } \right)}} \cr & xyz = \frac{1}{{{{\sin }^2}\phi \,{{\cos }^2}\phi }} + \frac{1}{{1 - {{\sin }^2}\phi \,{{\cos }^2}\phi }} = xy + z. \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section