Question

If $$0 \leqslant a \leqslant 3,0 \leqslant b \leqslant 3$$     and the equation $${x^2} + 4 + 3\cos \left( {ax + b} \right) = 2x$$      has at least one solution then the value of $$a + b$$  is

A. $$0$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$  
D. None of these
Answer :   $$\pi $$
Solution :
$$\eqalign{ & {x^2} - 2x + 4 = - 3\cos \left( {ax + b} \right) \cr & \Rightarrow \,\,{\left( {x - 1} \right)^2} + 3 = - 3\cos \left( {ax + b} \right). \cr} $$
$${\text{As }} - 1 \leqslant \cos \left( {ax + b} \right) \leqslant 1\,\,{\text{and }}{\left( {x - 1} \right)^2} \geqslant 0,$$         the above is possible only if $$\cos\left( {ax + b} \right) = - 1\,\,{\text{when }}x = 1.\,{\text{So, }}a + b = \pi ,3\pi ,5\pi ,\,{\text{e}}{\text{.t}}{\text{.c}}{\text{., and }}3\pi > 6.$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section